

DENNIS DUAL CONTROL

1 M

APPENDICES

VIIIOBE CITY

Abili to \$3

638

Executive Summary, Geotechnical Factual Report

Prepared by Jacobs

Executive Summary, Waste Composition and Tonnage

Modelling Evaluation – April 2018, prepared by Jacobs

Waste Composition and Tonnage - Modelling Evaluation

Executive Summary

This report is intended to provide an initial estimation of the likely tonnage, composition and Net Calorific Value (NCV) of waste arriving at the proposed Maryvale Energy from Waste (EfW) facility over a period of time (to 2032). It is based on information that was immediately available to the project team in terms of information supplied by Australian Paper (AP), publically available information, and information requested during the early stages of the development of the Feasibility Study (FS).

Regions for Waste

Waste feedstock for the project will be derived from a number of councils sources, which at the time of modelling this report is unknown as Councils will be entering a procurement process estimated to start mid-2018. In order to model representative councils, a selection was made based on locality to potential transfer / bulking stations for onward transport to Maryvale. The proposed Council areas of origin of the waste feedstock are shown in Table 1 below. Note that these are the initial Council areas selected based on locality, with no consideration given to availability of waste.

Table 1 : List of Initial Councils Selected

Region	Councils initially selected	
Gippsland	BassBaw Baw	LatrobeSouth Gippsland
	East Gippsland	Wellington
Metropolitan Melbourne	Bayside	Kingston
(the South East Melbourne	Boroondara	Knox
Councils)	Cardinia	Manningham
	Casey	Maroondah
	Frankston	Monash
	Glen Eira	Stonnington
	Greater Dandenong	Whitehorse
Dynon Road	Hobsons Bay	Moonee
	Maribyrnong	Port Phillip
	Melbourne	Yarra

Note that no engagement has been undertaken with these councils as part of this assessment, and it is intended to be indicative only of the availability of the tonnage and the likely composition of the waste from these regions. It is not expected that all of these councils will participate in the joint procurement processes, nor potentially that all waste generated by each council would be available to the EfW plant. However, they do provide an assessment of tonnage availability and, where data allowed, likely composition.

Current Waste Tonnages and Composition

Table 2 provides Kerbside Municipal Solid Waste (MSW) waste tonnages for each of the above regions for 2015/16 (data derived from the Sustainability Victoria Waste Data Portal) and estimated Kerbside MSW data based on current growth projections for 2020/21 using the Victorian Local Government Annual Waste Services Report (VLGAWSR) data. These tonnages were compiled to achieve an appropriate level of feedstock at year of plant opening (when combined with Commercial and Industrial (C&I) waste.

Appendix 2 *cont.*

Waste Composition and Tonnage - Modelling Evaluation

Table 2 : Waste Tonnages for Kerbside MSW for Gippsland, South East Melbourne and Dynon Road (selected Councils only)

Courseil and a	Kerbside N	ISW (tonnes)
Council area	2015/16	2020/21
South East Melbourne	380,023	416,485
Gippsland	50,867	55,317
Dynon Road	119,860	138,231
Totals	550,930	610,034

The future waste tonnages and compositions were modelled using the naus waste modelling platform – an online waste modelling tool. For modelling purposes, two scenarios were developed with 10 options for each scenario. The two scenarios are shown in Table 3 below. The two scenarios are termed B1 and B2 and relate to the tonnage sourced from the three different regions. Scenario B1 is based on 70% Kerbside MSW and 30% C&I split of the total tonnage available from the selected councils.

Scenario B2 is based on 80% Kerbside MSW and 20% C&I split of waste, and was developed based on:

- Capturing all tonnage available in Gippsland;
- Targeting 70ktpa Kerbside MSW from Dynon Road; and
- Making up the remainder needed (for 80% MSW split) from SE Melbourne.

Table 3 : Scenarios B1 and B2 - Kerbside MSW Tonnages and Percentages from Targeted Areas

Area	Scenario B1 Details Kerbside MSW	Scenario B2 Details for Kerbside MSW
Gippsland	6 LGAs	6 LGAs
	100% Kerbside MSW	100% Kerbside MSW
	Target of 55,000 tonnes	Target of 55,000 tonnes
South East Melbourne	14 LGAs	14 LGAs
	91% of Kerbside MSW	90% Kerbside MSW
	Target of 400,000	Target of 395,000 tonnes
Dynon Road	No waste targeted	6 LGAs
		51% Kerbside MSW
		Target of 70,000 tonnes

For naus modelling of the Commercial and Industrial (C&I) waste, only the largest five waste producing target sectors were included for the C&I sector. These were:

- Manufacturing;
- Retail Trade;
- Wholesale Trade;

Waste Composition and Tonnage - Modelling Evaluation

- Education and Training; and
- Healthcare and Social Assistance.

These sectors produce an estimated 55% of the C&I waste across the Council areas selected. Shown in Table 4 below are the estimated tonnages available for C&I waste for the selected Council areas.

Table 4 : Waste Tonnages for C&I, Gippsland and South East Melbourne and Dynon Road (selected Councils only)

Council area	2015/16 Estimated Target C&I (tonnes)	2020/21 Estimated Target C&I (tonnes)
South East Melbourne	280,649	297,861
Gippsland	26,989	28,644
Dynon Road	124,503	132,138
Totals	432,142	458,644

Jacobs used the compositional data from the HRL report, the Statewide Garbage Bin Audit and various council compositional audits to create a composition table for the Gippsland, South East Melbourne and Dynon Road Councils for Kerbside MSW to use as an input for the naus model. Composition of C&I waste varies depending on the economic activities that are present in each local government area. The analysis of the C&I sector the following information was used:

- www.economicprofile.com.au;
- <u>http://economy.id.com.au/;</u>
- Waste flows in the Victorian commercial sector: Final report, Sustainability Victoria (Sustainable Resource Use), 2013;
- C&I South East Melbourne Disposal Market Analysis, A Submission to Australian Paper, MRA, 18 August 2017.

The composition values for C&I waste differ slightly for each Council and region due to the difference in commercial and industrial activities present in each.

Waste Modelling - Options

In order to forecast the change in composition and volume (tonnage) of waste over time; 20 models were run based on the different options for Scenarios B1 and B2. These options are listed in Table 5 and are based on assumptions of possible changes in waste stream tonnages, characteristics or population growth changes (higher or lower than predicted) as a result of a range of system and policy changes.

Table 5 : Options for Modelling of Scenarios B1 and B2

Option	Description
Baseline	Baseline tonnages at 2021

Option	Description
Waste Stream W1	Widespread introduction of kerbside organics collections (including food and garden organics). Increase in organics processing capacity at public drop off facilities.
Waste Stream W2	Ban on E-waste to landfill
Waste Stream W3	New infrastructure built to increase capacity for recycling more materials prior to going to landfill.
Waste Stream W4	Introduction of container deposit scheme and improved systems/increase capacity for plastic recycling
Waste Stream W5	Combination of Options W1, W2 and W3 all occurring
Sensitivity Option G6	Growth projection 2% above baseline in 2018/19
Sensitivity Option G7	Growth projection 2% below baseline in 2018/19
Sensitivity Option G8	Growth projection 1% above baseline in 2018/19
Sensitivity Option G9	Growth projection 1% below baseline in 2018/19

Waste Tonnage Modelling Outcomes-

From the 20 modelled scenarios and options there are scenarios and options that have a larger impact than others. Table 6 below provides a list of the scenarios and options and a summary of their impact on tonnage at years 2020/21 and 2025/26. Also listed is the waste tonnage at year 2032/33 (the last year modelled) with the options ranked according to the tonnage at year 2032/33 (the lowest the lowest tonnage). Note that Option G6 and G7 are not included in this table, as the outputs from modelling of the tonnages showed that a 2% increase or decrease in population growth is unrealistic.

Appendix 2 cont.

Executive Summary, Traffic Impact Assessment

Prepared by Jacobs

Traffic Impact Assessment - Proposed EfW

JACOBS

Executive Summary

Paper Australia Pty Ltd (Australian Paper or AP) is conducting a Feasibility Study to determine the viability of constructing and operating an Energy from Waste (EfW) plant. The EfW will be located within AP's existing Maryvale Pulp and Paper Mill site (Mill), approximately seven kilometres north of Morwell in the Latrobe Valley. Part of the Feasibility Study includes preparing assessments and documentation for applications to government agencies for requisite statutory approvals. Jacobs Group (Australia) Pty Ltd (Jacobs) has been engaged by AP to undertake a Traffic Impact Assessment (TIA) report as part of the Planning Permit application for the EfW plant.

During the course of the Feasibility Study and approvals applications, AP has conducted extensive consultation with a wide range of stakeholders, including the community groups and government agencies/departments. Consultation with VicRoads and Latrobe City Council led to the scoping of this Traffic Impact Assessment (TIA) which forms part of the Planning Permit application for the project. Prior to conducting the TIA, the scope was agreed with VicRoads and council to ensure that the relevant issues were analysed and assessed.

This TIA details the current traffic conditions and the expected traffic generation and distribution during the peak construction phase and the operational phase of the proposed project, as well as the potential traffic impacts when the site is fully operational ten years post construction of the EfW development at the nominated key intersections. The TIA assessed the potential impacts of the traffic for the project using SIDRA software to analyse traffic generation/congestion. Additionally the TIA assessed the 'swept paths' of the proposed A-Double trucks, where the envelope 'swept' out by the truck body was reviewed to determine if the truck can be accommodated within the constraints of the existing road network.

Of particular interest regarding the Planning Permit application is the road network from the Princes Freeway to/from the proposed EfW plant at the AP Mill. The road network consists of the route from Princes Freeway, Tramway Road, Princes Drive, Alexanders Road, Old Melbourne Road, Maryvale Road, Traralgon West Road and two private AP roads.

The traffic generation/congestion analysis using the SIDRA software analysed traffic operational performance at midblock sections and intersections, comparing the existing scenario of current usage (background traffic including existing AP Mill traffic) with the proposed scenario of the EfW plant's construction and operation. The TIA also summarises the swept path analysis undertaken at key intersections along the proposed access routes for the largest vehicle planned to be used for deliveries to the proposed facility – this is proposed to be an A-Double truck and two possible configurations ("Truck A" and "Truck B") have been assessed.

The "Truck A" configuration (29.8m long at 75.5 tonne Gross Vehicle Mass (GVM)) is currently approved for this route. The Truck B configuration (30.9m long at 85.5t GVM) has also been assessed for this route as it provides additional payload capacity enabling a reduction in average A-Double truck volumes from 32 per day to 26 per day. This is consistent with the development of the Higher Productivity Freight Vehicle (HPFV) network outlined in the Victorian freight plan "Delivering the Goods". Truck B is designed to meet the parameters for the Victorian HPFV A-Double network Reference Vehicle 1 and will benefit from the bridge strengthening program along the Princess Freeway to Morwell, which is currently in progress.²

The findings of the TIA indicate that the potential impacts of the proposed project in terms of traffic volumes and swept paths is minimal and that the project will not lead to significant impacts on the road network.

²https://www.vicroads.vic.gov.au/newsmedia/2018/bridge-strengthening-works-happening-along-the-princes-highway

¹ https://transport.vic.gov.au/Ports-and-freight/Freight-Victoria

Ministerial reasons for decision under Environment Effects Act 1978

	REFERRAL NUMBER 2018R01
<u>Attachment 2</u>	For Public Notice via Internet
REASONS FOR DECIS	ION UNDER ENVIRONMENT EFFECTS ACT 1978
Project name:	Australian Paper Energy from Waste
Proponent:	Australian Paper Pty. Ltd.
Description of Project	t:
 Rustalian Paper Pty Ltd (texisting Australian Paper N will alter the baseload pow change to the predominan model (EfW). This type of i incineration. Municipal So will be incinerated to create Site roads and weigh Waste reception, tipp Furnaces for combus Energy recovery boil Continuous emission Condensing extraction without steam extract EfW plant buildings at Laydown and minor at A black start emerge An emergency shutd 	Aryvale Pulp and Paper Mill Site located in the Latrobe Valley. The project Aryvale Pulp and Paper Mill Site located in the Latrobe Valley. The project er source from a reliance on natural gas and grid-bought electricity and t baseload power to be generated from Moving Grate 'Energy from Waste' incineration is undertaken by the movement of waste via a moving grate for lid Waste and Commercial and Industrial waste will be used as fuel, which e electricity and steam. The project infrastructure includes: ubridges bing hall and bunker where waste is delivered stored and mixed respectively stion of residual waste er/steam generators is monitoring system on steam turbo-generator of circa 70 MWe maximum generation capacity tion and structures access roads on the existing AP Maryvale Site ncy diesel generator of capacity approximately 6 MWe lown diesel generator of capacity circa 200 kWe
Decision:	
The Minister for Planning for the Australian Paper I March 2018.	has decided that an Environment Effects Statement (EES) <u>is not</u> required Energy from Waste Project, as described in the referral accepted on 22
Reasons for Decision:	:
• The project has potent emissions and waste, i in particular the Works enable appropriate exa	ial for effects particularly in relation to air emissions, greenhouse gas although these are unlikely to be significant. Existing statutory processes, Approval process under the <i>Environment Protect Act</i> 1970, will readily amination of both these effects and necessary mitigation measures.
 The proponent will be energy use and greer EPA Works Approval with EPA's 'Protocol for 	required to demonstrate that they have identified best practice in relation to nhouse gas (GHG) emissions associated with the proposal as part of the process. A GHG Action Plan will need to be implemented in accordance or Environmental Management: GHG and Energy Efficiency in Industry'.
 Residual effects on an be significant and can 	renity (such as noise and odour) and cultural heritage are also unlikely to be readily addressed via existing statutory requirements.

• The effects on native vegetation and other biodiversity values are minor due to the siting of the project on developed land with very limited ecological values.

Date of Decision: 2 May 2018

EPA Works Approval Summary

Australian Paper waste to energy works approval decision

Environment Protection Authority Victoria

Publication 1717 November 2018

Summary report

Paper Australia Pty Ltd (trading as Australian Paper) has proposed construction of a 'moving grate' waste to energy facility at its Maryvale site, in Victoria's Latrobe Valley (Figure 1). The facility will process residual municipal solid waste, and industrial and commercial waste.

The proposed facility requires a works approval from the Environment Protection Authority Victoria (EPA) under the *Environment Protection Act 1970* (the Act). A works approval is required for industrial and waste management activities that have the potential for significant environmental impact. The approval permits the construction of a plant, the installation of equipment or the modification of processes.

On 24 April 2018, EPA received an application for works approval from Australian Paper. EPA requested additional information before accepting the application as complete. On 25 May 2018, EPA received the updated application and commenced its assessment. On the statutory decision due date of 28 November 2018, EPA approved the works proposal, subject to conditions.

Figure 1: Map showing the location of the Australian paper facility (source – Australian Paper Works Approval Application, Jacobs 2018).

This publication summarises the key aspects of EPA's assessment and the decision-making process for the works approval application. The full works approval application assessment report is available via EPA's website.

EPA decision on the works approval application

On 28 November 2018, EPA approved the works approval application, subject to conditions.

What was proposed in the works approval application?

Australian Paper proposed building and operating a waste to energy facility adjacent to the pulp and paper mill on its Maryvale site. The proposed facility will be capable of producing steam for the operation of the mill, and electricity for the mill or for export to the grid. The facility will thermally treat approximately 650,000 tonnes (+/- 10%) per year of residual municipal solid waste and industrial and commercial waste.

Activities to follow works approval

Activities that Australian Paper will need to undertake following works approval include:

- obtaining other permits (for example, a planning permit)
- completion of final detailed designs
- securing waste contracts consistent with the works approval conditions
- a construction phase (approximately 2 years)
- a commissioning phase
- · obtaining an EPA operating licence

The facility has an expected operational lifetime of 25-years.

Authorised and published by Environment Protection Authority Victoria 200 Victoria Street, Carlton VIC 3053 W epaxic:gov.au | T 1300 372 842 (1300 EPA VIC)

Works approval application process

The diagram below shows some of the key steps in the works approval application and assessment process.

4 April 2018	
EPA receive payment for the WA application.	2018 24 April
	EPA receive WA application. Deemed incomplete and additional information requested
25 May 2018	
EPA receive and accept updated WA application.	2018 30 May - 6 July
144 (1440)	Extended public comment period with information sessions held on 5, 6, 6 19 June, IIS submissions received.
25 July 2018	
EPA organised a public contenence in Tranaigon, led by an independent	
chait, and the country of the country of the	2018 10 Aug
	EPA publishes the independent chains report from the conference including recommendations for consideration by EPA in making to determination.
27 Sept 2018	
Health impact assessment submitted	i
to supprement the tox apputation,	2018 2~16 Oct
	EI% publishes nearth impact assessment and invites the public to comment on it.
	2018 Oct - Nov
	Completion of technical assessmenta by EPA specialists on how the WA application meets relevant policies
28 November 2018	and best practice requirements.

Background: waste to energy

2

There are over 1,600 operational waste to energy facilities globally. Modern, well-run facilities are commonly found throughout countries of Europe (Sweden, France, United Kingdom) and East Asia (Japan, South Korea).

The technology generates energy as heat from the combustion of waste materials that would otherwise go to landfill. Heat is converted to steam, which can be used to generate electricity and/or in operational processes.

Victoria has a number of EPA-approved and licensed waste to energy facilities. However, these operate at a smaller scale and use different waste feedstocks from those proposed by Australian Paper.

Works approval application details

Australian Paper's Maryvale paper and pulp mill requires a significant amount of operational steam and energy. In 2016, the mill used 30 MW of electricity and approximately 6.7 PJ (6.7 million GJ) of natural gas (which represents approximately 5 per cent of Victoria's total annual gas consumption). The proposed waste to energy facility would reduce the mill's gas consumption to approximately 2 PJ per year, and generate almost all its electricity needs.

Australian Paper has conducted an international search and shortlisted three contractors with a strong track record of designing, building and commissioning waste to energy facilities which are capable of meeting the European Union's Industrial Emissions Directive and Best Available Techniques requirements.

The proposed design is based on eight equivalent operational facilities in the United Kingdom.

The facility will have capacity to treat a total annual residual waste volume of approximately 650,000 tonnes (+/- 10%), coming from Melbourne and Gippsland. The facility will not treat waste which is prescribed industrial waste, hazardous waste or presorted recycling waste.

Construction is set to commence in November 2019, commissioning to commence in 2022 and project completion expected in 2023.

Proposed key design controls

The proposed key design controls include:

- · continuous emission monitoring of pollutants
- continuous monitoring of crucial operating parameters (for example temperature, pollutants in flue gas) to enable optimisation of plant operation (for example waste combustion, energy generation and flue gas treatment efficiency)
- flue gas treatment system optimised to remove acidic gases, heavy metals and complex halogenated compounds (e.g. dioxins and furans)
- hazardous waste and waste that does not comply with waste acceptance criteria to be segregated and rejected

Engagement by EPA

As required by the Act, the works approval application was advertised in newspapers, and communicated on a dedicated EPA webpage and the Engage Victoria website.

There was an extended period of public comment, from 30 May to 6 July 2018, with dedicated public information sessions held on 5, 6 and 19 June.

EPA received 115 submissions during the consultation period. Of the 109 submissions received though Engage Victoria, 84 supported the application, 8 supported it subject to conditions and 8 objected to it (9 submissions did not specify an opinion).

Following a review of these responses, EPA organised a community conference, held on 25 July 2018 in Traralgon. The conference, hosted by an independent chair, provided an additional opportunity for the community to raise concerns and, where possible, attempt to reach a just resolution of them, consistent with section 20B of the EP Act.

The chair subsequently published recommendations, which have been considered as part of EPA's determination.

EPA assessment

What did EPA assess?

This section summarises the findings relating to the most important issues as part of EPA's assessment. For more information on how EPA assessed all the key issues of concern, see Section 6 of the full report.

Regulatory compliance

- EPA has determined that the proposal:
- is protective of human health and the environment
- is consistent with the SEPPs
- meets the Environment Protection Principles of the Act
- is consistent with the Statewide Waste and Resource Recovery Infrastructure Plan and two relevant regional plans
- will contribute to meeting waste disposal needs for Victoria, is compliant with the relevant resource recovery implementation, plans and does not undermine recycling

- has comprehensively considered potential climate change impacts in accordance with EPA's obligations
- Australian Paper meets the 'fit and proper person' requirement of the Act.

Key issues

Air emissions

Why is it a concern?

Combustion of waste generates emissions of a range of air pollutants. EPA received a number of submissions raising concerns specifically about the potential environmental and health impacts of emissions from the facility. Air quality modelling was performed according to the requirements of the SEPP.

Conclusions of the assessment

The application complied with the requirement to achieve best practice and continuous improvement for all relevant indicators and reductions to the 'maximum extent achievable' for hazardous air pollutants.

How will it be managed?

There will be a flue gas treatment system and best practice controls will achieve compliance with the SEPP.

There will be continuous monitoring of air pollutants, with the results governing treatment of the flue gas to achieve best practice emission control. EPA will require monitoring data to be made publicly available.

Best practice

Why is it a concern?

Best practice is a requirement of the SEPPs. New sources of emissions must apply best practice to manage those emissions. EPA considers best practice one of the most important requirements of the policy as changes over time will place stricter controls and requirements on new sources of emissions.

Conclusions of the assessment

Waste to energy is an established disposal method that is used globally, with international best practice standards available and used in this assessment. Accordingly, the potential environmental risks and impacts are well known, with evolving improvements in containment, control and monitoring technologies. The European Union's Industrial Emissions

Directive (IED 2010/75/ EU) and the Best Available Techniques reference document, are key compliance policy documents that the facility will need to meet. These directives and policies are regularly updated to reflect international best practice. The applicant has committed to comply with international best practice.

How will it be managed?

The requirements of EPA approval conditions will ensure the operation of the plant is managed in accordance with best practice.

Health impacts

Why is it a concern?

Protecting human health is integral to the intent of the Act, subordinate legislation and policies. The EPA assessment process specifically considers the potential impacts to human health and how these impacts are controlled.

To supplement its application Australian Paper submitted a health impact assessment.

In addition to an assessment of the works approval application, EPA commissioned an independent literature review of publicly available research on human health impacts from air emissions from modern waste to energy facilities. The objective was to determine the possible impacts on the health of residents living close to the facility and across the Latrobe Valley region.

Conclusions of the assessment

The EPA review of literature concluded that there was little potential for health impacts or risk from exposure to emissions from modern waste to energy facilities, noting the few studies available.

The contribution of emissions from the proposed activity were found to be very low and the technology of the facility design combined with conditions of operation, capable of ensuring protection of human health-

How will it be managed?

Management will largely be through the implementation of the key design controls and operation of the facility to meet Best Practice. Conditions of EPA approvals will require routine review of the operations and emissions to ensure the necessary protections of health.

Waste feedstock

Why is it a concern?

It is critically important to understand the waste that is targeted and received at the site to ensure that the facility has the capability of treating that waste. The composition of kerbside collected waste varies both over time and across councils. The design of the facility needs to be adjusted to account for this variation.

If waste at the site is detected via onsite operational controls (e.g. visual inspection) to contain material unsuitable for combustion, that waste will be quarantined and handled in accordance with Victorian waste regulations.

Conclusions of the assessment

Twelve months of Victorian waste composition data was compared to waste composition data from the operational facility in Suffolk (UK). It was demonstrated that the wastes are comparable.

Before the final detailed design are completed, further investigation and verification of targeted kerbside waste will be performed to ensure it is fully understood.

How will it be managed?

During the operation of the plant Australian Paper will be required to perform regular audits on the waste feedstock to ensure that the facility is operated in accordance with EPA approvals.

Waste hierarchy

Why is it a concern?

The waste hierarchy is one of the eleven principles of the Environment Protection Act. The EPA needs to give consideration of how an application and a decision aligns with these principles.

Conclusions of the assessment

The waste hierarchy preferences recovery of energy from waste after recycling as a method for managing waste over sending the waste to landfill. Landfilling is currently the dominant option available in Victoria for residual waste. This proposal targets only residual wastes and so does not undermine recycling options.

At the time of approving this works approval, it is not considered feasible to viably recover material from the residual waste feedstock prior to burning the waste.

How will it be managed?

The EPA has required the facility maintains capacity to install a system capable of higher waste recovery and an investigation reviewing the feasibility of building such a pre-sort facility every 5 years.

Other issues assessed

Waste generated by the facility

Incineration creates three types of ash: incinerator bottom ash, boiler ash, and air pollution control residue (also known as fly ash). Incinerator bottom ash will be stored onsite pending reuse or disposal. Boiler and fly ash will be stored in a silo pending treatment prior to being disposed of in a suitable landfill. Any waste generated by the facility will need to be disposed of in accordance with the framework of the Act, including the <u>Environment</u> <u>Protection (Industrial Waste Resource) Regulations</u> <u>2009</u>. Any reuse will require EPA approval.

Wastewater

EPA has investigated the capability of the site's existing system and has concluded that it can treat the additional wastewater generated by the new facility. The existing wastewater treatment system can accommodate the additional wastewater without exceeding the EPA licence discharge limits.

Energy use and greenhouse gas emissions

EPA has determined that the proposal will result in a net reduction in greenhouse gas emissions through its lifetime. This takes into consideration the offset of GHG emissions from the current energy use at the Australian Paper mill and through the diversion of waste from landfill.

Noise

Operational noise will meet the noise levels set in the Noise from industry in regional Victoria (publication 1411) guideline at all times. Measurements will be taken during the operation of the facility to confirm that the actual noise of operations reflects the application predictions.

Odour

Controls will be sufficient to reduce the risk of odour beyond the site boundary. The waste bunker will be constantly under negative pressure, with air injected to the combustion chamber to destroy odorous gases.

Land

To enable the construction of the facility, land will need to be cleared on the site. EPA does not regulate land clearing in Victoria. Australian Paper will perform a thorough assessment of potential existing contamination of that land and manage any contaminated material in accordance with Victorian waste regulations.

Groundwater

The facility will be built on concrete, which will minimise the risk of pollution to groundwater. The existing groundwater has been correctly assessed and described in the application, and the impact from the proposed facility is compliant with policy.

Conditions of approval

The works approval is subject to conditions. Some conditions must be met prior to commencement of construction; others relate to commissioning of the facility. In addition, operation of the facility will be regulated through an EPA-issued licence. The works approval conditions include:

- The final detailed design must be verified by an EPA-appointed industrial facilities auditor (or alternative expert approved by EPA).
- The facility is to be verified at commissioning stage by an EPA-appointed industrial facilities auditor prior to issue of an operating licence. The auditor will assess whether the facility has been constructed and is operating (in the commissioning stage) in accordance with the conditions of the approvals from EPA.
- Verification that the facility can treat the waste in a safe manner.
- · Australian Paper must clearly describe the waste

Appendix 5 cont.

Conclusions, Economic Impacts of Proposed Energy from Waste Plant

Prepared by Western Research Institute

The combined EfW plant operations and construction are estimated to make significant contributions to both the Victorian and Latrobe Valley economies and help Australian Paper improve its social and economic contribution to its employees and the communities in which it operates.

In Victoria, the contribution is estimated to be:

- An average of \$161 million per annum for each of the 3 years of construction and \$198.7 million per annum added to GSP
- An average of \$76.1 million per annum for each of the 3 years of construction and \$76.1 million per annum in household income
- An average of 1,046 full-time equivalent jobs per annum for each of the 3 years of construction and 911 FTE jobs thereafter.

In the Latrobe Valley region, the combined contribution is estimated to be:

- An average of \$67.9 million per annum for each of the 3 years of construction and \$95.8 million per annum in GRP
- An average of \$29.6 million per annum for each of the 3 years of construction and \$20.2 million per annum in household income
- An average of 454 FTE jobs per annum for each of the 3 years of construction and 265 FTE jobs thereafter.

The proposed EfW Plant has the potential to provide other social, economic and environmental benefits alongside those discussed in this report, including wider benefits to the Australian economy.

It is recommended that a full business case be developed to gain greater insight into the full impact of the EfW Plant.

Executive Summary, Works Approval Application 20B Conference Report

Australian Paper Energy from Waste proposal

Executive summary and recommendations

Paper Australia Pty Ltd (trading as Australian Paper) (AP) submitted a works approval application (WAA) to the Environment Protection Authority (EPA) for an Energy-from-Waste (EfW) plant at its Maryvale paper mill site in the Latrobe Valley. EPA formally accepted the application on 25 May 2018.

Following a review of the 115 submissions received, EPA determined a Section 20B Conference would useful to further explore community views and concerns about the proposal.

The conference provided an opportunity for:

- AP to provide an overview of its EfW WAA
- EPA to provide an update on the WAA and assessment process
- Participants to hear about issues raised in submissions, ask questions of AP and EPA and express their views about the proposal.

The role of the Chair is to collate the information from the 20B Conference and provide a report. This report documents the perspectives and questions raised by conference participants. As Chair and author of this report I have included participant contributions in good faith without endorsement or judgment as to their accuracy or veracity.

The following recommendations are made in response to participant concerns as outlined at the conference and have their basis in participant comments made during the conference or in submissions. Additional detail is contained in Section 3 of this report in relation to the Chair's observations and how EPA might deliver the recommendations contained in Tables 1-1 to 1-4 below.

Table 1-1: The following <u>general</u> recommendations relate to actions <u>prior to works approval</u> application determination:

RECOMMENDATIONS

EPA to continue raising awareness about where Works Approval Applications sit in the overall approvals and licensing process, that it is concept approval vs detailed design approval the EfW plant (including approved design for

construction and commissioning).

EPA to facilitate the provision of responses to the collated list of questions at Section 2.7 of this report.

Table 1-2: The following topic specific recommendations relate to actions prior to works approval application determination:

RECOMMENDATIONS

Re Topic 1 - Air emission monitoring & control technology to prevent health impacts:

- EPA approvals unit to seek advice from its Chief Scientist / Public Health Unit about:
- AP's statement that "By complying with particular clauses in SEPPs (e.g. SEPP Air Quality Management "SEPP AQM"), compliance with human health exposure is also achieved"
- EPA approvals unit to seek advice from its Chief Scientist / Public Health Unit about:
- · when a Health Risk Assessment might be a relevant consideration in the works approval assessment process.

208 CONFERENCE REPORT = AUSTRALIAN PAPER ENERGY FROM WASTE PROPOSAL

R	ECOMMENDATIONS
Тс	pic 2 – Best practice handling of waste and European Standards:
EF	PA to consider:
•	Obtaining further information from AP about proposed pre-treatment options if in their detailed assessment of the proposal this is not sufficiently addressed.
fat s c	ole 1-3: The following <u>topic specific</u> recommendations relate to future actions, <u>if a works approv</u> tranted:
RI	ECOMMENDATIONS
То	pic 1 – Air emission monitoring and control technology to prevent health impacts:
	A to consider: supporting AP to undertake specific community consultation in relation to establishing an appropriate monitoring, evaluation and reporting regime as part of considering potential future licence conditions.
То	pic 3 – Waste Hierarchy and waste composition
EF	A to consider:
•	outlining in its detailed assessment report for this works approval application (or some other appropriate communication channel) how it expects AP to manage each of these issues through environmental management plans and the types of licence conditions that it might consider imposing.
То	pic 4 – Management of incoming waste and residual waste
EF	A to consider:
•	outlining in its detailed assessment report for this works approval application (or some other appropriate communication channel) how it expects AP to manage each of these issues through environmental management plans and the types of licence conditions that it might consider imposing.
To	pic 5 – Greenhouse Gas Emissions and odour from the site
•	A to consider: the need for expert review of any emissions and odcur modelling information relied upon in its detailed assessment.
То	pic 6 Track record and public consultation
•	A to consider: the benefits and appropriateness of providing access to engagement advice (from EPA's Communications and Engagement Group) to AP to support their continued engagement approaches.
E	PA to consider:
•	Encouraging AP to better engage with external stakeholders (agencies and community representatives) specifically around health impacts.

REC	OMMENDATIONS
EPA	to consider its role in:
• in	proved external communications and access to information.
As st and h	ated above additional detail is contained in Section 3 of this report in relation to the Chair's observations ow EPA might deliver the recommendations in the tables above.

Executive Summary: Maryvale Energy from Waste Plant: Health Impact Assessment

Prepared by EnRisks

Appendix 8 cont.

tilssue	Reference in HIA	Potential Health Impacts Considered	Impact Identified (positive or negative and significance)	Types of measures that could be implemented to enhance positive impacts or mitigate negative impacts
on es	Section 5.4	Range of health effects associated with exposure to pollutants released to air from the proposed facility	All exposures: Negative but negligible More specifically: Negative but negligible No acute risk issues of concern No Antronic risk issues of concern Particulate exposures are regiligible and essentially representative of zero risk Incrementative of zero risks are representative of zero risks	The proper operation and maintenance, and monitoring, of the pollution control/flue gas equipment.
lity s pathway res	Section 5.5	Range of health effects associated with exposure to pollutants released to air from the proposed facility, from the proposed facility accumulate in soil, homegrown fruit and homegrown fruit and produce (eggs, beef and milk)	All exposures: Negative but negligible More specifically Note specifically for multiple pathway exposures All calculated risks for incividual exposure pathways are nicividual exposure pathways are nicividual exposure pathways exposures and essentially representative of all calculated risks for combined multiple pathway exposures are regligible and essentially representative of zero risk	The proper operation and maintenance, and monitoring, of the pollution control/filue gas equipment.
	Section 5.6	Annoyance, stress, anxiety	Not significant and negligible	The proper operation of the tipping hall as proposed to ensure fugitive odour emissions are effectively managed.
	Section 6	Steep disturbance, annoyance, children's school performance and cardiovascular health	Modelled noise impacts: negligible potential for health impacts	Additional assessment of the project detailed design is required, and application of appropriate and reasonable mitigation measures is required so as not to increase noise levels at the nearest sensitive receivers from current levels.
nic ment	Section 7	Reduction in anviety, stress and feelings of insecurity	Positive improvements in health and wellbeing	The identified positive outcomes in the local community can be enhanced by encouraging employment of people who live within the local community

Appendix 8 cont.

Types of measures that could be implemented to enhance positive impacts or mitigate negative impacts	Details to be determined at the detailed design phase of the project. Further development of the feedstock delivery protocol into an operational management plan to address the discovery and concernent of this manufacture.	These health impacts relate to community perceptions and trust. It is therefore important that the positive impacts associated with the project are enhanced within the local community and community consultation is confinued and uses a range of techniques that are tailoncie to the various sub-populations that have particular areas of concern or particular characteristics that make normal methods of communication less effective. It is important that an effective communication community comuliation program is maintained throughout the construction, commissioning and operational phases of the project.		
Impact Identified (positive or negative and significance)	Negative but minimal Negative but minimal	Positive outcomes enhancing feelings of wellbeing for aspects such as sustainability. Negative outcomes for polantial changes to amenity and community feelings of control nalated to perceived risks rather than actual risks.		
Potential Health Impacts Considered	Injury or death, stress and anxiety. Possible injury if incorrectly disposed of	Welfbeing, changes in levels of stress and anxiety levels		
Reference in HIA	Section 7 Section 7	Section 7	-	
Health Aspect/Issue	Traffic and transport Discovery and disposal of	nations was is community and social		

Executive Summary - Air Quality Impact Assessment

Prepared by Jacobs

Air Quality Impact Assessment

JACOBS

Executive Summary

Australian Paper (AP) is Victoria's largest generator of baseload renewable energy, the largest industrial user of natural gas in Victoria and a major user of coal-fired electricity. Australian Paper is facing increasing costs associated with surges in energy prices and uncertainty of supply. With support from the Australian and Victorian Governments, Australian Paper is undertaking a comprehensive Energy from Waste (EW) feasibility study for a proposed new facility to be located at the Maryvale Pulp and Paper Mill site. Potentially the new EfW Plant could divert 650,000 tonnes (+/- 10%) of waste from Gippsland and Melbourne landfills annually (Australian Paper, 2018).

Australian Paper is proposing to construct an Energy from Waste (EfW Plant) at its existing Maryvale Mill site in the Latrobe Valley, Victoria. The EfW Plant is proposed to utilise Municipal Solid Waste (MSW) and Commercial and Industrial (C&I) waste as feedstock for two EfW boilers. The facility will produce steam and electricity for use at the existing Mill, with any excess electricity generation potentially exported to the National Electricity Market (NEM).

AP Maryvale has a significant existing Amenity Rural Buffer around its site to reduce the potential impact of its operations on surrounding residents.

The proposed EfW Plant under normal operations would have all emissions to the air emitted via a single stack with two or three flues at a height of approximately 95 metres above ground level. The EfW Plant will have a nominal output of 70 megawatts (MW), with the combustion of waste via two moving-grate fired boilers, a 6MW 'black-start' diesel generator, and a 200 kiloWatt (kW) emergency shut-down generator.

The application of best practice was considered in the assessment (EPAV, 2017). The potential air emissions were analysed and estimated following the EPA's guidelines: *Energy from waste* (EPA, 2013a), and *Recommended separation distances for industrial residual air emissions* (EPA, 2013b). EPA's Energy from waste guidelines stipulate that EfW plants must comply with the European Union's *Industrial Emissions Directive 2010/75/EU* ("IED"), while it is also necessary to meet the requirements of *State Environment Protection Policy (Air Quality Management)* ("SEPP (AQM)")).

An air quality impact assessment was undertaken for AP's proposed EfW Plant in accordance with the SEPP(AQM) and EPA guidelines for the use of the regulatory model, AERMOD (EPAV, 2014a; EPAV, 2014b). Details of the assessment methods were discussed and agreed with the EPA prior to commencing the works.

Key components of the AERMOD modelling assessment methods were:

1) Use of AERMOD in accordance with EPA (2014b)

 Creation of AERMOD meteorological data in accordance with EPA (2014a) including the use of a five-year, dataset of hourly meteorological parameters.

Computational modelling using AERMOD and the associated comparison with the SEPP (AQM) requirements is a complex and specialist field. In simple terms, the modelling and assessment process involved the following steps:

Identification of relevant standards; for the EfW Project the standards are specified by:

- IED limits for emissions discharged from an EfW plant stack
- SEPP (AQM) limits for emissions discharged from an EfW plant stack
- SEPP (AQM) 'design criteria' or ground level concentrations (GLCs) for sensitive receptors; i.e. maximum GLCs ('design criteria') for substances emitted by the EfW stack at residential (or other sensitive) locations.
- Development and compilation of air emissions modelling data, including regional meteorology, background air quality data, project infrastructure details (e.g. stack heights, building heights, etc), project emissions (e.g. discharges from the stack) and regional terrain/geographical data

R0097400-EP-RP-001

JACOBS Air Quality Impact Assessment Conducting computational air emissions modelling using the EPA designated modelling software ("AERMOD") and including the required data inputs. The AERMOD modelling predicts the ground level concentrations of substances due to the behaviour of the emissions plume combined with the existing background ground level concentrations, local/regional meteorology and the geography of the Latrobe Valley Assessment of proposed emissions and air emissions modelling results with IED and SEPP (AQM) limits and design criteria A number of conservative assumptions were built in to the modelling data in order to provide suitable factors of safety to ensure that the proposed EfW Plant will meet the IED and SEPP (AQM) requirements. These assumptions include: Inclusion of already-closed industrial facilities into the background air quality data, such as Hazelwood Power Station, Morwell Power Station and the Energy Brix briquette factories Inclusion of the existing Australian Paper gas-fired boilers into the background air quality data - this is conservative because the purpose of the EfW Project is to reduce the use of these boilers Modelling the particulate matter 2.5 (PM2.5) as 100% of the entire mass fraction of total particulate matter being emitted from the EfW Plant at the maximum IED limit of 30 mg/Nm3. Modelling of PM25 was also performed using a more realistic figure of 0.02 mg/Nm³, which itself is still a conservative value given that the Ricardo-AEA report states this figure (0.02 mg/Nm3) is the average maximum emission from sampled UK EfW plants. The assessment concludes that the emissions to air from the proposed EfW Plant are minimal, with no adverse air quality impacts anticipated. Table E.1 shows the key emissions from the EfW Plant and the compliance with SEPP (AQM). Emissions from the EfW Plant will meet all IED and SEPP (AQM) emission limits. The AERMOD results for the EfW Plant's operating scenario demonstrated there were no predicted exceedances of SEPP(AQM) Design Criteria for the 99.9th percentile, with the exception of PM_{2.5} when combined with background concentrations. AERMOD results demonstrate that there are no exceedances of the SEPP(AQM) design criteria for any modelled substances at any of the discrete receptors. The exceedances for PM2.5 are due to the existing high background levels of PM2.5. The peak PM2.5 exceedances are highly likely to be associated with elevated smoke levels that may have originated from bushfires, landholder burning off, forest regeneration burns and planned burning. Smoke is often persistent in the Latrobe Valley in autumn due to the stable atmospheric conditions at that time of year as demonstrated in the time series plots. The time-series plots show that the contribution of the EfW Plant to PM2.5 ground level concentrations is minimal in comparison to the periodic high PM2.5 background levels. The assessment showed that existing background PM2.6 levels are above the design criterion for some periods as shown in a time-series plot analysis. AERMOD modelling was also conducted on a scenario where there were zero EfW Plant PM2.5 emissions (i.e. only background) which showed exceedances of SEPP(AQM) Design Criteria. Additionally, AERMOD modelling was conducted using a high in-stack PM2.6 emissions concentration (30 mg/m3) and a low in-stack PM2.5 emissions concentration (0.02 mg/m3). The difference in resultant GLCs between the 30 mg/m³ case, the 0.02 mg/m³ case and the zero emissions case was negligible providing further confirmation that the PM2.5 exceedances are due to the high background PM2.5 levels. It should also be noted that the assessment included an evaluation of total particulate emissions (PM_{total}) and these emissions from the EfW Plant, as measured at the stack, are compliant for the IED Limit of 30mg/Nm³. The air quality assessment concludes that for steady state normal operating conditions, the worst case PM2.5 contribution to the overall PM2.5 levels beyond the Amenity Rural Buffer is below 0.1 µg/m3 of the overall PM2.5 levels (approximately 0.2% of the SEPP AQM Design Criterion). This is based on the 99.9 percentile 1 hour ¹ Ricardo-AEA Ltd (Buckland, Thomas), Assessment of particulate emissions from energy-from-waste plant, National Atmospheric Emissions Inventory, Report for DEFRA, 14/10/2015. https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1511261133_AQ0726_PM_EIW_emissions_report_Issue1_Final_including_appendices.pdf, assessed R0097400-EP-RP-001

Appendix 9 *cont.*

An educity impact Ass	essilient				JAC	UB3
average – i.e. the 0.1 µg/m ³ the given meteorological yes	contribution to ar. It is also bas	the overall wo	orst case PM ₂ , conservative f	Ievels would igure for the er	occur for only missions rate.	9 hours in
The conclusion of the air qua Project's EfW emissions. Alt PM2s should be monitored to	ality modelling hough the Proj o confirm comp	assessment is ect has only a bliance of the i	there is a low very small eff Project's predi	v risk of air qua fect on the high cted very mind	ality impact from h PM2.s backgr for effect on PM	m the ound levels, 125 levels.
Emissions of air toxics such (Hg) were investigated for th to the EfW Plant are below th Criterion. Monitoring of the e to confirm that the proposed receptors.	as IARC Group is assessment he relevant SE lemental comp EfW operation	o 1 carcinoger Model result PP(AQM) des sosition of the will not cause	ns chromium \ s for all of the ign criteria an in-stack pollut a significant ai	/I (Cr(VI)), cad carcinogens s d most are 10 ant concentral r quality impac	Imium (Cd) and howed that the 0 – 1,000 times tions should be tts at any sens	d mercury GLCs due s below their considered itive
Substance & assessment	AP Maryvale 2016	BoM LVA 2016	BoM LVA	BoM LVA 2014	gim ²) BoM LVA 2013	BoM LVA
Carbon monovide: SEPP/AOMI C	O Design Criterior	- 29 000 unim ¹		2010		
Summary of CO results - all GLCs	substantially less t	han the SEPP(A	QM) design criteri	on		
CO, 99.9% 1h; 9 th -highest from 'Top 100 Table'	2,527	2,559	2,036	6,343	ND	ND
CO, 99.9% 1h; grid maximum	1,607	1,616	1,490	3,432	ND	ND
CO, 90 ^e percentile grid result	1,489	1,490	1,264	3,432	ND	ND
CO, 99.9% 1h; discrete receptor maximum	1,488	1,497	1,268	3,432	ND	ND
Nitrogen dioxide: SEPP(AQM) NC	a Design Criterion	– 190 µg/m³				
Summary of NO2 results – all GLCs	substantially less	than the SEPP(A	QM) design criter	rion		
NO ₂ , 99.9% 1h; 9 ^s -highest from 'Top 100 Table'	95.6	79.3	93.4	84.1	84.3	69.1
NO ₂ , 99.9% 1h; grid maximum	66.2	64,4	71.9	67.85	70.1	62.8
NO ₂ , 90 th percentile grid result	50.8	50.8	55.6	50.76	54.5	49.0
NO ₂ , 99.9% 1h; discrete receptor maximum	50.8	51.2	56.4	50,8	54.5	49.3
Sulfur dioxide: SEPP(AQM) SO ₂ C	esign Criterion –	450 µg/m²				
summary of SO ₂ results - all GLCs	substantially less	than the SEPP(A	QM) design criter	non		
'Top 100 Table'	167,0	169.7	155.7	122.4	192.5	230.5
SO2, 99.9% Th; grid maximum	72.5	81.1	96.4	92.9	76.0	64.4
SO ₂ so percentile grid result	70,8	10.9	2.65	89.1	70.8	60.9
maximum Destinuitate matter 2.6 (2011)	70.6	72.9	87.2	90.9	70.6	62.8
Paroculate matter 2.5 (PM), at 6	ast OLCs shows 0	COD (AOM) 4	ng, SEPP(AUJA) (a blab brafana	eion -oo µgim.	
PM25, 99.9% 1h; 9%-highest from 'Top 100 Table'	61.1	60.1	165.7	84.2	ND	ND
Background contribution	59.9	59.9	155.6	84.0	ND	ND
EfW contribution	1.2	0.2	0.3	1.6	ND	ND
ALTER MANUFACTURES	7.6	V.4.	4.9	1.0	140	nu

Air Quality Impact Assessment

Substance & assessment	AP Maryvale 2016	BoM LVA 2016	BoM LVA 2015	BoM LVA 2014	BoM LVA 2013	BoM LVA 2012
PM _{2.5} , 99.9% 1h; grid maximum	49.2	47.7	38.4	42.9	ND	ND
PM _{2.5} , 90 th percentile grid result	47.1	47.1	37.6	40.3	ND	ND
PM _{2.5} 99.9% 1h; discrete receptor maximum	47.1	47.1	37,7	40.3	ND	ND
Particulate matter 2.5 (PM _{2.6}), at e PM _{2.5} Design Criterion – 50 µg/m ³	mission rate of 0	.02 mg/m³, as pe	or the average m	aximum in the Ri	cardo-AEA Repo	rt SEPP(AQ
Summary of PM2.s results - 9 th high	est GLCs above S	EPP (AQM) desi	gn criterion, due te	high background	PM2.3 levels	
PM _{2.5} , 99.9% 1h, 9 th -highest from 'Top 100 Table'	61,1	60.1	155.7	84.1	ND	ND
PM ₂₅ , 99.9% 1h; grid maximum	49.2	47.7	38.4	42.9	ND	ND
PMg.s. 90 th percentile grid result	47.1	47.1	37.6	40.3	ND	ND
PM _{2.5} , 99.9% 1h; discrete receptor maximum	47.1	47.1	37.6	40.3	ND	ND
Particulate matter 2.5 (PM _{2.5}), for I 50 up/m ³	background PM ₂	s (i.e. EfW Plant	emission rate of	zero mg/m³): SE	PP(AQM) PM _{2.5} D	esign Criterio
Summary of PM _{2.5} results - 9 th high	est GLCs above S	EPP (AQM) desi	an criterion			
PM2.s. 99.9% 1h; 9 th -highest from 'Top 100 Table'	59.9	59.9	155.6	84.0	ND	ND
PM _{2.5} , 99.9% 1h; grid maximum	47.1	47.1	37.6	40.3	ND	ND
PM2.5. 99.9% 1h; discrete receptor maximum	47.1	47.1	37.6	40,3	ND	ND
Ammonia: SEPP(AQM) NH ₃ Desig	n Criterion - 600 s	/m ³				1
Summary of NH ₃ results - all GLCs	substantially less	than the SEPP(A	QM) design criter	ion		
NHs 99.9% th: 9 th -highest from 'Top 100 Table'	26.6	15.7	15.6	15.5	15.6	14.9
NH ₃ , 99.9% 1h; grid maximum	10.0	14.4	13.8	13.7	14.0	13.2
NH ₅ 90 th percentile grid result	4.2	4.2	4,4	4.9	4.4	4.3
NH ₃ , 99.9% 1h; discrete receptor maximum	4.6	5.1	5.1	5.6	5.2	4.8
Dioxins and Furans: SEPP(AQM)	DF Design Criteria	on - 3.7E-06 µg/r	m ³			
Summary of DF results - all GLCs s	ubstantially less t	han the SEPP(A	2M) design criteri	m		
DF, 99.9% 1h; 9%-highest from 'Top 100 Table'	8.9E-08	5.2E-08	5.2E-08	5.2E-08	5.2E-08	5.0E-08
DF, 99.9% 1h; grid maximum	3.3E-08	4.8E-08	4.6E-08	4.6E-08	4.7E-08	4.4E-08
DF, 90 ^a percentile grid result	1.4E-08	1.4E-08	1.5E-08	1.6E-08	1.5E-08	1.4E-08
DF, 99.9% 1h; discrete receptor maximum	1.5E-08	1.7E-08	1.7E-08	1.9E-08	1.7E-08	1.6E-08
PAHs as B(a)P: SEPP(AQM) DF D	esign Criterion – (0.73 µg/m ³				
Summary of B(a)P results - all GLC	s substantially les	ss than the SEPP	(AQM) design crit	erion		
B(a)P, 99.9% 1h; 9 ^a -highest from 'Top 100 Table'	0.012	0.007	0.007	0.007	0.007	0.007
B(a)P, 99.9% 1h; grid maximum	0.004	0.006	0.006	0.006	0.005	0.005

R0097400-EP-RP-001

Appendix 9 *cont.*

Air Quality Impact Assessment

JACOBS

Substance & assessment	AP Maryvale 2016	BoM LVA 2016	BoM LVA 2015	BoM LVA 2014	BoM LVA 2013	BoM LVA 2012
B(a)P, 99.9% 1h; discrete receptor maximum	0.002	0.002	0.002	0.002	0.002	0.002
Hexavalent chromium (highest ri	sk metal): SEPP(/	QM) Cr(VI) Des	ign Criterion - 0.1	7 µg/m³		
Summary of Cr(VI)results - all GLC	s substantially les	s than the SEPPI	AQM) design crite	non		
Cr(VI), 99.9% 1h; 9 th -highest from 'Top 100 Table'	0.136	0.080	0.080	0.079	0.080	0.076
Cr(VI), 99.9% 1h; grid maximum	0.051	0.073	0.070	0.070	0.071	0.067
Cr(VI), 90 th percentile grid result	0.021	0.022	0.023	0.025	0.023	0.022
Cr(VI), 99.9% 1h; discrete receptor maximum	0.024	0.026	0.026	0.029	0.026	0.025
Cadmium (2 nd -highest risk metal): SEPP(AQM) Cd	Design Criterion	– 0.033 µg/m³			
Summary of Cd results - all GLCs	less than the SEPI	P(AQM) design o	riterion			
Cd, 99.9% 1h; 9 th -highest from 'Top 100 Table'	0.027	0.016	0.016	0.015	0.016	0.015
Cd, 99.9% 1h; grid maximum	0.010	0.014	0.014	0.014	0.014	0.013
Cd, 90 th percentile grid result	0.004	0.004	0.004	0.005	0.004	0.004
Cd, 99.9% 1h; discrete receptor maximum	0.005	0.005	0,005	0.006	0.005	0.005
Mercury: SEPP(AQM) Cd Design	Criterion - 0.33 µg	/m ^a				
Summary of Hg results - all GLCs	substantially less t	than the SEPP(A	QM) design criter	ion		
Hg, 99.9% 1h; 9°-highest from 'Top 100 Table'	0.044	0.026	0.026	0.026	0.026	0.025
Hg, 99.9% 1h; grid maximum	0.017	0.024	0.023	0.023	0.023	0.022
Hg. 90 th percentile grid result	0.007	0.007	0.007	0.008	0.007	0.007
Hg, 99.9% 1h; discrete receptor maximum	0.008	0.009	0.008	0.009	0.009	0.008

R0097400-EP-RP-001

jul.

Air Quality Modelling Results

Australian Paper Energy from Waste Feasibility Study - Air Quality Modelling Results

FACT SHEET 16

Air Quality Monitoring Results

This table details the results of the air quality impact assessment undertaken as part of the feasibility study into the adoption of Energy from Waste technology at Australian Paper's Maryvale Pulp and Paper Mill. A separate Air Quality fact sheet explaining key aspects of the assessment is also available.

Substance & assessment	AP Maryvale 2016	BoM LVA 2016	BoM LVA 2015	BoM LVA 2014	BoM LVA 2013	BoM LVA 2012
Carbon monoxide: SEPP(AQM) CO Design Criterion	- 29,000 µg/m³					
Summary of CO results - all GLCs substantially less th	an the SEPP(AQM)	design criterior	า			
CO, 99.9% 1h; 9뽜-highest from 'Top 100 Table'	2,527	2,559	2,036	6,343	ND	ND
CO, 99.9% 1h; grid maximum	1,607	1,616	1,490	3,432	ND	ND
CO, 90th percentile grid result	1,489	1,490	1,264	3,432	ND	ND
CO, 99.9% 1h; discrete receptor maximum	1,488	1,497	1,268	3,432	ND	ND
Nitrogen dioxide: SEPP(AQM) NO ₂ Design Criterion - 1	90 µg/m³					
Summary of NO₂ results - all GLCs substantially less the	nan the SEPP(AQM)	design criterio	n			
NOz, 99.9% 1h; 9 th -highest from 'Top 100 Table'	95.6	79.3	93.4	84.1	84.3	69.1
NOz, 99.9% 1h; grid maximum	66.2	64.4	71.9	67.85	70.1	62.8
NOz, 90th percentile grid result	50.8	50.8	55.6	50.76	54.5	49.0
NO2, 99.9% 1h; discrete receptor maximum	50.8	51.2	56.4	50.8	54.5	49.3
Sulfur dioxide: SEPP(AQM) SO2 Design Criterion - 4	50 µg/m³					
Summary of SO ₂ results - all GLCs substantially less t	han the SEPP(AQM) design criterio	on			
SOz, 99.9% 1h; 9 th -highest from 'Top 100 Table'	167.0	169.7	155.7	122.4	192.5	230.5
SOz, 99.9% 1h; grid maximum	72.5	81.1	96.4	92.9	76.0	64.4
SO2, 90th percentile grid result	70.6	70.9	85.2	89.1	70.6	60.9
SO2, 99.9% 1h; discrete receptor maximum	70.6	72.9	87.2	90.9	70.6	62.8
Particulate matter 2.5 (PM _{2.5}), at emission rate of	of 30 mg/m³(IED	limit): SEPP(A	QM) PM _{2.5} Desig	n Criterion -50	µg/m³	
Summary of PM _{2.5} results - 9 th highest GLCs above SE	PP (AQM) design cr	terion, due to l	nigh backgroun	d PM _{2.5} levels		
PM _{2.5} , 99.9% 1h; 9 th -highest from 'Top 100 Table'	61.1	60.1	155.7	84.2	ND	ND
Background contribution	59.9	59.9	155.6	84.0	ND	ND
EfW contribution	1.2	0.2	0.3	1.6	ND	ND
PM _{2.5} , 99.9% 1h; grid maximum	49.2	47.7	38.4	42.9	ND	ND
PM _{2.5} , 90 th percentile grid result	47.1	47.1	37.6	40.3	ND	ND
PM _{2.5} , 99.9% 1h; discrete receptor maximum	47.1	47.1	37.7	40.3	ND	ND

ummary of PM_{25} results - 9 th highest GLCs above SEPP (A M_{25} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{25} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{25} 90.9% 1h; 9 th -highest from 'Top 100 Table' M_{25} 90.9% 1h; 9 th -highest receptor maximum articulate matter 2.5 (PM₂₅), for background PM2.5 (e ummary of PM_{25} results - 9 th highest GLCs above SEPP (A M_{25} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{25} 99.9% 1h; gird maximum M_{25} 99.9% 1h; discrete receptor maximum	AQM) design cri 61.1 49.2 47.1 47.1 emission rate of QM) design crit 59.9	iterion, due to H 60.1 47.7 47.1 47.1 of zero mg/m	high background 155.7 38.4 37.6 37.6	4 PM ₂₅ levels 84.1 42.9 40.3	ND ND ND	ND ND ND
M_{2y} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{2y} 99.9% 1h; grid maximum M_{2y} 90 th percentile grid result M_{2y} 90.9% 1h; discrete receptor maximum articulate matter 2.5 (PM _{2y}), for background PM2.5 (e ummary of PM _{2y} results - 9 th highest GLCs above SEPP (Al M_{2y} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{2y} 99.9% 1h; grid maximum M_{2y} 99.9% 1h; discrete receptor maximum	61.1 49.2 47.1 47.1 emission rate o QM) design crit 59.9	60.1 47.7 47.1 47.1 of zero mg/ma	155.7 38.4 37.6 37.6	84.1 42.9 40.3	ND ND ND	ND ND
M _{2.5} , 90.9% 1h; grid maximum M _{2.5} , 90 th percentile grid result M _{2.5} , 99.9% 1h; discrete receptor maximum articulate matter 2.5 (PM _{2.5}), for background PM2.5 (e ummary of PM _{2.5} results - 9 th highest GLCs above SEPP (At M _{2.5} , 99.9% 1h; 9 th -highest from 'Top 100 Table' M _{2.5} , 99.9% 1h; grid maximum M _{2.5} , 99.9% 1h; discrete receptor maximum	49.2 47.1 47.1 emission rate of QM) design crit 59.9	47.7 47.1 47.1 of zero mg/m	38.4 37.6 37.6	42.9 40.3	ND ND	ND ND
$M_{2,y}$ 90 m percentile grid result $M_{2,y}$ 99.9% 1h; discrete receptor maximum articulate matter 2.5 (PM _{2,3}), for background PM2.5 (e ummary of PM _{2,5} results - 9 th highest GLCs above SEPP (At $M_{2,y}$ 99.9% 1h; 9 th -highest from 'Top 100 Table' $M_{2,y}$ 99.9% 1h; grid maximum $M_{2,y}$ 99.9% 1h; discrete receptor maximum $M_{2,y}$ -29.9% 1h; discrete receptor maximum	47.1 47.1 emission rate o QM) design crit 59.9	47.1 47.1 of zero mg/m3	37.6 37.6	40.3	ND	ND
M ₂₅ , 99.9% 1h; discrete receptor maximum articulate matter 2.5 (PM₂₅), for background PM2.5 (e ummary of PM ₂₅ results - 9 th highest GLCs above SEPP (Al M ₂₅ , 99.9% 1h; 9 th -highest from 'Top 100 Table' M ₂₅ , 99.9% 1h; grid maximum M ₂₅ , 99.9% 1h; discrete receptor maximum	47.1 emission rate of QM) design crit 59.9	47.1 of zero mg/m	37.6	40 7 1		
articulate matter 2.3 (PM_{2g}), for background PM2.5 (e ummary of PM_{2g} results – 9 th highest GLCs above SEPP (Al M_{2g} 99.9% 1h; 9 th -highest from 'Top 100 Table' M_{2g} 99.9% 1h; grid maximum M_{2g} 99.9% 1h; discrete receptor maximum M_{2g} -250 SCPU/ADN MUP backer Scholars COQUUE (20	QM) design crit	of zero mg/m:	ALCEDD(AOM) D	40.5	ND	ND
Unimary of PM225 results - 3" nighest GLCS above SEPP (All M225 99.9% 1h; 9"-highest from 'Top 100 Table' M225 99.9% 1h; 9r-highest from 'Top 100 Table' M225 99.9% 1h; grid maximum M225 99.9% 1h; discrete receptor maximum M225 99.9% 1h; discrete receptor maximum	59.9	and and	5): SEPP(AQM) P	M _{2.5} Design Crite	rion – 50 µg/m²	
M_{25} 99.9% In; 9°-nignest from top 100 rable M_{25} 99.9% Ih; grid maximum M_{25} 99.9% Ih; discrete receptor maximum (M_{25} 99.9\% Ih; discrete receptor maximum (M_{25} 99.9\% Ih; discrete	59.9 1	erion	155.0	04.0	ND	ND
M ₂₅ , 99.9% 11; grid maximum M ₂₅ , 99.9% 1h; discrete receptor maximum	471	59.9	155.0	84.0	ND	ND
Plass 55.5% III, discrete receptor maximum	47.1	47.1	37.0	40.5	ND	ND
mmonia SEPPLALIVU NH $_{2}$ Design Litterion = 600000000000000000000000000000000000	47.1	47.1	57.0	40.5	ND	ND
ummary of NHa results – all GLCs substantially less than t	the SEPP(AOM) design criteri	 nn			
H ₃ , 99,9% 1h; 9 th -highest from 'Top 100 Table'	26.6	15.7	15.6	15.5	15.6	14.9
H ₃ , 99.9% 1h; grid maximum	10.0	14.4	13.8	13.7	14.0	13.2
H ₃ , 90 th percentile grid result	4.2	4.2	4.4	4.9	4.4	4.3
H ₃ , 99.9% 1h; discrete receptor maximum	4.6	5.1	5.1	5.6	5.2	4.8
ioxins and Furans: SEPP(AQM) B(a)P Design Criterion	- 3.7E-06 µg/r	n³				
ummary of DF results - all GLCs substantially less than th	ne SEPP(AQM) (design criterior	า			
F, 99.9% 1h; 9 th -highest from 'Top 100 Table'	8.9E-08	5.2E-08	5.2E-08	5.2E-08	5.2E-08	5.0E-08
F, 99.9% 1h; grid maximum	3.3E-08	4.8E-08	4.6E-08	4.6E-08	4.7E-08	4.4E-08
F, 90 th percentile grid result	1.4E-08	1.4E-08	1.5E-08	1.6E-08	1.5E-08	1.4E-08
F, 99.9% 1h; discrete receptor maximum	1.5E-08	1.7E-08	1.7E-08	1.9E-08	1.7E-08	1.6E-08
AHs as B(a)P: SEPP(AQM) B(a)P Design Criterion - 0.73	µg/m³					
ummary of B(a)P results - all GLCs substantially less than	n the SEPP(AQ	M) design criter	rion			
(a)P, 99.9% 1h; 9 th -highest from 'Top 100 Table'	0.012	0.007	0.007	0.007	0.007	0.007
(a)P, 99.9% 1h; grid maximum	0.004	0.006	0.006	0.006	0.006	0.006
(a)P, 90 th percentile grid result	0.002	0.002	0.002	0.002	0.002	0.002
(a)P, 99.9% 1h; discrete receptor maximum	0.002	0.002	0.002	0.002	0.002	0.002
lexavalent chromium (highest risk metal): SEPP(AQ	M) Cr(VI) Desig	In Criterion - 0.	.17 μg/m³			
ummary of Cr(VI)results - all GLCs substantially less than	1 the SEPP(AQN	1) design criter		0.070	0.000	0.070
r(VI), 99.9% III; 9 ^{w-} -Highest Hollin Top 100 Table	0.051	0.080	0.080	0.079	0.080	0.075
	0.051	0.075	0.070	0.070	0.071	0.007
r(VI) 99 9% 1h: discrete recentor maximum	0.021	0.022	0.025	0.020	0.025	0.022
admium (2nd-bigbest risk metal): SEPP(AOM) (d Des	sign Criterion -	0.020	0.020	0.025	0.020	0.025
ummary of Cd results - all GLCs less than the SEPP(AOM)	design criterio	n				
d, 99.9% 1h; 9 th -highest from 'Top 100 Table'	0.027	0.016	0.016	0.015	0.016	0.015
d, 99.9% 1h; grid maximum	0.010	0.014	0.014	0.014	0.014	0.013
d, 90 th percentile grid result	0.004	0.004	0.004	0.005	0.004	0.004
d, 99.9% 1h; discrete receptor maximum	0.005	0.005	0.005	0.006	0.005	0.005
lercury: SEPP(AQM) Hg Design Criterion – 0.33 µg/m ³						
ummary of Hg results - all GLCs substantially less than th	ne SEPP(AQM)	design criterior	n			
g, 99.9% 1h; 9 th -highest from 'Top 100 Table'	0.044	0.026	0.026	0.026	0.026	0.025
g, 99.9% 1h; grid maximum	0.017	0.024	0.023	0.023	0.023	0.022
a. 90 th percentile arid result	0.007	0.007	0.007	0.008	0.007	0.007
5, P	0.000	0.009	0.008	0.009	0.009	0.008
a, 99,9% 1h: discrete receptor maximum	0.000	0.005	0.000	0.005	0.005	0.000

Energy from Waste Project Office: 126 George Street, Morwell, Victoria 3840